Berapakah hasil dari (1^3)-(2^3)+(3^3)-(4^3)+(5^3)-(6^3)+...+(49^3-50^3)
Solusinya:
(a-b)^3=a^3-3a^2b+3ab^2-b^3
a^3-b^3=(a-b)^3+3a^2b-3ab^2
a^3-b^3=(a-b)^3+3ab(a-b)
1^3-2^3=(1-2)^3+3.1.2(1-2)= -1-3(1.2)
3^3-4^3=(3-4)^3+3.3.4(3-4)= -1-3(3.4)
5^3-6^3=(5-6)^3+3.5.6(5-6)= -1-3(5.6)
......................................................
49^3-50^3=(49-50)^3+3.49.50(49-50)= -1-3(49.50)
Sehingga:
1^3-2^3+3^3-4^3+...+49^3-50^3 =25(-1)-3(1.2+3.4+5.6+7.8+.....49.50)
=-25-3(2+12+30+56+....+2450)
Selanjutnya tinggal mencari(2+12+30+56+....+2450). Coba lanjutkan dulu.
SELAMAT DATANG
"Selamat Datang di blog saya, semoga blog ini dapat bermanfaat bagi anda"
Tampilkan postingan dengan label Olimpiade Matematika SMP. Tampilkan semua postingan
Tampilkan postingan dengan label Olimpiade Matematika SMP. Tampilkan semua postingan
10 April 2013
Soal Latihan OSN Matematika tingkat Provinsi
Soal Olimpiade Matematika SMP tingkat Provinsi 2012
Bagi yang mau download soal Oliimpiade Matematika SMP tingkat provinsi tahun 2012, yang dapat dipakai untuk latihan persiapan OSN tingkat provinsi selanjutnya.
Silahkan klik DI SINI
Silahkan klik DI SINI
Langganan:
Postingan (Atom)